Predicting lysine-malonylation sites of proteins using sequence and predicted structural features

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 22 vom: 15. Aug., Seite 1757-1763
1. Verfasser: Taherzadeh, Ghazaleh (VerfasserIn)
Weitere Verfasser: Yang, Yuedong, Xu, Haodong, Xue, Yu, Liew, Alan Wee-Chung, Zhou, Yaoqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't lysine-malonylation sites prediction post translational modification support vector machines Bacterial Proteins Malonates Lysine K3Z4F929H6
LEADER 01000caa a22002652 4500
001 NLM284081302
003 DE-627
005 20250223135214.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25353  |2 doi 
028 5 2 |a pubmed25n0946.xml 
035 |a (DE-627)NLM284081302 
035 |a (NLM)29761520 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taherzadeh, Ghazaleh  |e verfasserin  |4 aut 
245 1 0 |a Predicting lysine-malonylation sites of proteins using sequence and predicted structural features 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.09.2019 
500 |a Date Revised 17.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a Malonylation is a recently discovered post-translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT-Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half-sphere exposure provides additional improvement to the prediction performance. SPRINT-Mal trained on mouse data yields robust performance for 10-fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews' Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT-Mal achieved comparable performance when testing on H. sapiens proteins without species-specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT-Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a lysine-malonylation sites prediction 
650 4 |a post translational modification 
650 4 |a support vector machines 
650 7 |a Bacterial Proteins  |2 NLM 
650 7 |a Malonates  |2 NLM 
650 7 |a Lysine  |2 NLM 
650 7 |a K3Z4F929H6  |2 NLM 
700 1 |a Yang, Yuedong  |e verfasserin  |4 aut 
700 1 |a Xu, Haodong  |e verfasserin  |4 aut 
700 1 |a Xue, Yu  |e verfasserin  |4 aut 
700 1 |a Liew, Alan Wee-Chung  |e verfasserin  |4 aut 
700 1 |a Zhou, Yaoqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 22 vom: 15. Aug., Seite 1757-1763  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:22  |g day:15  |g month:08  |g pages:1757-1763 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25353  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 22  |b 15  |c 08  |h 1757-1763