Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 219(2018), 4 vom: 01. Sept., Seite 1224-1234
1. Verfasser: Zhang, Feng-Ping (VerfasserIn)
Weitere Verfasser: Carins Murphy, Madeline R, Cardoso, Amanda A, Jordan, Gregory J, Brodribb, Timothy J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't epidermal cell size floral evolution hydraulics stomatal density vein density
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Investment in leaf veins (supplying xylem water) is balanced by stomatal abundance, such that sufficient water transport is provided for stomata to remain open when soil water is abundant. This coordination is mediated by a common dependence of vein and stomatal densities on cell size. Flowers may not conform to this same developmental pattern if they depend on water supplied by the phloem or have high rates of nonstomatal transpiration. We examined the relationships between veins, stomata and epidermal cells in leaves, sepals and petals of 27 angiosperms to determine whether common spacing rules applied to all tissues. Regression analysis found no evidence for different relationships within organ types. Both vein and stomatal densities were strongly associated with epidermal cell size within organs, but, for a given epidermal cell size, petals had fewer veins and stomata than sepals, which had fewer than leaves. Although our data support the concept of common scaling between veins and stomata in leaves and flowers, the large diversity in petal vein density suggests that, in some species, petal veins may be engaged in additional functions, such as the supply of water for high cuticular transpiration or for phloem delivery of water or carbohydrates
Beschreibung:Date Completed 25.09.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15210