Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning

Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 2 vom: 14. Feb., Seite 923-937
1. Verfasser: Zhensong Wang (VerfasserIn)
Weitere Verfasser: Lifang Wei, Li Wang, Yaozong Gao, Wufan Chen, Dinggang Shen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM284044202
003 DE-627
005 20231225042315.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2768621  |2 doi 
028 5 2 |a pubmed24n0946.xml 
035 |a (DE-627)NLM284044202 
035 |a (NLM)29757737 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhensong Wang  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 12.11.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Segmenting organs at risk from head and neck CT images is a prerequisite for the treatment of head and neck cancer using intensity modulated radiotherapy. However, accurate and automatic segmentation of organs at risk is a challenging task due to the low contrast of soft tissue and image artifact in CT images. Shape priors have been proved effective in addressing this challenging task. However, conventional methods incorporating shape priors often suffer from sensitivity to shape initialization and also shape variations across individuals. In this paper, we propose a novel approach to incorporate shape priors into a hierarchical learning-based model. The contributions of our proposed approach are as follows: 1) a novel mechanism for critical vertices identification is proposed to identify vertices with distinctive appearances and strong consistency across different subjects; 2) a new strategy of hierarchical vertex regression is also used to gradually locate more vertices with the guidance of previously located vertices; and 3) an innovative framework of joint shape and appearance learning is further developed to capture salient shape and appearance features simultaneously. Using these innovative strategies, our proposed approach can essentially overcome drawbacks of the conventional shape-based segmentation methods. Experimental results show that our approach can achieve much better results than state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Lifang Wei  |e verfasserin  |4 aut 
700 1 |a Li Wang  |e verfasserin  |4 aut 
700 1 |a Yaozong Gao  |e verfasserin  |4 aut 
700 1 |a Wufan Chen  |e verfasserin  |4 aut 
700 1 |a Dinggang Shen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 2 vom: 14. Feb., Seite 923-937  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:2  |g day:14  |g month:02  |g pages:923-937 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2768621  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 2  |b 14  |c 02  |h 923-937