Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability

In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 2 vom: 15. Feb., Seite 987-998
1. Verfasser: Lihe Zhang (VerfasserIn)
Weitere Verfasser: Jianwu Ai, Bowen Jiang, Huchuan Lu, Xiukui Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article