Person Re-Identification With Metric Learning Using Privileged Information

Despite the promising progress made in recent years, person re-identification remains a challenging task due to complex variations in human appearances from different camera views. This paper presents a logistic discriminant metric learning method for this challenging problem. Different with most ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 2 vom: 15. Feb., Seite 791-805
1. Verfasser: Xun Yang (VerfasserIn)
Weitere Verfasser: Meng Wang, Dacheng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM284044067
003 DE-627
005 20231225042315.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2765836  |2 doi 
028 5 2 |a pubmed24n0946.xml 
035 |a (DE-627)NLM284044067 
035 |a (NLM)29757732 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xun Yang  |e verfasserin  |4 aut 
245 1 0 |a Person Re-Identification With Metric Learning Using Privileged Information 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Despite the promising progress made in recent years, person re-identification remains a challenging task due to complex variations in human appearances from different camera views. This paper presents a logistic discriminant metric learning method for this challenging problem. Different with most existing metric learning algorithms, it exploits both original data and auxiliary data during training, which is motivated by the new machine learning paradigm-learning using privileged information. Such privileged information is a kind of auxiliary knowledge, which is only available during training. Our goal is to learn an optimal distance function by constructing a locally adaptive decision rule with the help of privileged information. We jointly learn two distance metrics by minimizing the empirical loss penalizing the difference between the distance in the original space and that in the privileged space. In our setting, the distance in the privileged space functions as a local decision threshold, which guides the decision making in the original space like a teacher. The metric learned from the original space is used to compute the distance between a probe image and a gallery image during testing. In addition, we extend the proposed approach to a multi-view setting which is able to explore the complementation of multiple feature representations. In the multi-view setting, multiple metrics corresponding to different original features are jointly learned, guided by the same privileged information. Besides, an effective iterative optimization scheme is introduced to simultaneously optimize the metrics and the assigned metric weights. Experiment results on several widely-used data sets demonstrate that the proposed approach is superior to global decision threshold-based methods and outperforms most state-of-the-art results 
650 4 |a Journal Article 
700 1 |a Meng Wang  |e verfasserin  |4 aut 
700 1 |a Dacheng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 2 vom: 15. Feb., Seite 791-805  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:2  |g day:15  |g month:02  |g pages:791-805 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2765836  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 2  |b 15  |c 02  |h 791-805