Robust LSTM-Autoencoders for Face De-Occlusion in the Wild

Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 2 vom: 15. Feb., Seite 778-790
1. Verfasser: Fang Zhao (VerfasserIn)
Weitere Verfasser: Jiashi Feng, Jian Zhao, Wenhan Yang, Shuicheng Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM284044024
003 DE-627
005 20231225042315.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2771408  |2 doi 
028 5 2 |a pubmed24n0946.xml 
035 |a (DE-627)NLM284044024 
035 |a (NLM)29757731 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang Zhao  |e verfasserin  |4 aut 
245 1 0 |a Robust LSTM-Autoencoders for Face De-Occlusion in the Wild 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces 
650 4 |a Journal Article 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
700 1 |a Jian Zhao  |e verfasserin  |4 aut 
700 1 |a Wenhan Yang  |e verfasserin  |4 aut 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 2 vom: 15. Feb., Seite 778-790  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:2  |g day:15  |g month:02  |g pages:778-790 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2771408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 2  |b 15  |c 02  |h 778-790