Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent eve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 45(2018), 7 vom: 01., Seite 1260-1276
1. Verfasser: Lin, Li-An (VerfasserIn)
Weitere Verfasser: Luo, Sheng, Davis, Barry R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Event dependence Frailty model Heterogeneity Markov Chain Monte Carlo Survival model
LEADER 01000caa a22002652 4500
001 NLM284018570
003 DE-627
005 20241107231850.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2017.1367368  |2 doi 
028 5 2 |a pubmed24n1593.xml 
035 |a (DE-627)NLM284018570 
035 |a (NLM)29755162 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Li-An  |e verfasserin  |4 aut 
245 1 0 |a Bayesian regression model for recurrent event data with event-varying covariate effects and event effect 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT) 
650 4 |a Journal Article 
650 4 |a Event dependence 
650 4 |a Frailty model 
650 4 |a Heterogeneity 
650 4 |a Markov Chain Monte Carlo 
650 4 |a Survival model 
700 1 |a Luo, Sheng  |e verfasserin  |4 aut 
700 1 |a Davis, Barry R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 45(2018), 7 vom: 01., Seite 1260-1276  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:45  |g year:2018  |g number:7  |g day:01  |g pages:1260-1276 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2017.1367368  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2018  |e 7  |b 01  |h 1260-1276