Plasma-Induced Amorphous Shell and Deep Cation-Site S Doping Endow TiO2 with Extraordinary Sodium Storage Performance

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 26 vom: 17. Juni, Seite e1801013
1. Verfasser: He, Hanna (VerfasserIn)
Weitere Verfasser: Huang, Dan, Pang, Weikong, Sun, Dan, Wang, Qi, Tang, Yougen, Ji, Xiaobo, Guo, Zaiping, Wang, Haiyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article amorphous shell deep cation-site S doping rate performance sodium ion battery titanium dioxide
LEADER 01000naa a22002652 4500
001 NLM283918225
003 DE-627
005 20231225042016.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201801013  |2 doi 
028 5 2 |a pubmed24n0946.xml 
035 |a (DE-627)NLM283918225 
035 |a (NLM)29744949 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Hanna  |e verfasserin  |4 aut 
245 1 0 |a Plasma-Induced Amorphous Shell and Deep Cation-Site S Doping Endow TiO2 with Extraordinary Sodium Storage Performance 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Structural design and modification are effective approaches to regulate the physicochemical properties of TiO2 , which play an important role in achieving advanced materials. Herein, a plasma-assisted method is reported to synthesize a surface-defect-rich and deep-cation-site-rich S doped rutile TiO2 (R-TiO2-x -S) as an advanced anode for the Na ion battery. An amorphous shell (≈3 nm) is induced by the Ar/H2 plasma, which brings about the subsequent high S doping concentration (≈4.68 at%) and deep doping depth. Experimental results and density functional theory calculations demonstrate greatly facilitated ion diffusion, improved electronic conductivity, and an increased mobility rate of holes for R-TiO2-x -S, which result in superior rate capability (264.8 and 128.5 mAh g-1 at 50 and 10 000 mA g-1 , respectively) and excellent cycling stability (almost 100% retention over 6500 cycles). Such improvements signify that plasma treatment offers an innovative and general approach toward designing advanced battery materials 
650 4 |a Journal Article 
650 4 |a amorphous shell 
650 4 |a deep cation-site S doping 
650 4 |a rate performance 
650 4 |a sodium ion battery 
650 4 |a titanium dioxide 
700 1 |a Huang, Dan  |e verfasserin  |4 aut 
700 1 |a Pang, Weikong  |e verfasserin  |4 aut 
700 1 |a Sun, Dan  |e verfasserin  |4 aut 
700 1 |a Wang, Qi  |e verfasserin  |4 aut 
700 1 |a Tang, Yougen  |e verfasserin  |4 aut 
700 1 |a Ji, Xiaobo  |e verfasserin  |4 aut 
700 1 |a Guo, Zaiping  |e verfasserin  |4 aut 
700 1 |a Wang, Haiyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 26 vom: 17. Juni, Seite e1801013  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:26  |g day:17  |g month:06  |g pages:e1801013 
856 4 0 |u http://dx.doi.org/10.1002/adma.201801013  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 26  |b 17  |c 06  |h e1801013