|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM283917903 |
003 |
DE-627 |
005 |
20231225042016.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/mrc.4748
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0946.xml
|
035 |
|
|
|a (DE-627)NLM283917903
|
035 |
|
|
|a (NLM)29744919
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Brouwer, Darren H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a NMR crystallography of zeolites
|b How far can we go without diffraction data?
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.09.2019
|
500 |
|
|
|a Date Revised 18.09.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Copyright © 2018 John Wiley & Sons, Ltd.
|
520 |
|
|
|a Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a 29Si
|
650 |
|
4 |
|a NMR crystallography
|
650 |
|
4 |
|a X-ray diffraction
|
650 |
|
4 |
|a algorithm
|
650 |
|
4 |
|a density functional theory
|
650 |
|
4 |
|a optimization
|
650 |
|
4 |
|a porous materials
|
650 |
|
4 |
|a solid-state NMR
|
650 |
|
4 |
|a structure determination
|
650 |
|
4 |
|a zeolites
|
700 |
1 |
|
|a Van Huizen, Jared
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Magnetic resonance in chemistry : MRC
|d 1985
|g 57(2019), 5 vom: 09. Mai, Seite 167-175
|w (DE-627)NLM098179667
|x 1097-458X
|7 nnns
|
773 |
1 |
8 |
|g volume:57
|g year:2019
|g number:5
|g day:09
|g month:05
|g pages:167-175
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/mrc.4748
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 57
|j 2019
|e 5
|b 09
|c 05
|h 167-175
|