|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM28380663X |
003 |
DE-627 |
005 |
20231225041744.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.8b00768
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0946.xml
|
035 |
|
|
|a (DE-627)NLM28380663X
|
035 |
|
|
|a (NLM)29733605
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Leng, Chuan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.09.2018
|
500 |
|
|
|a Date Revised 17.09.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water and how such structures change while being exposed to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property whereas other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Huang, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kexin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hung, Hsiang-Chieh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yaoxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Shaoyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 34(2018), 22 vom: 05. Juni, Seite 6538-6545
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2018
|g number:22
|g day:05
|g month:06
|g pages:6538-6545
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.8b00768
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2018
|e 22
|b 05
|c 06
|h 6538-6545
|