Calibration and validation of toxicokinetic-toxicodynamic models for three neonicotinoids and some aquatic macroinvertebrates

Exposure patterns in ecotoxicological experiments often do not match the exposure profiles for which a risk assessment needs to be performed. This limitation can be overcome by using toxicokinetic-toxicodynamic (TKTD) models for the prediction of effects under time-variable exposure. For the use of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 27(2018), 7 vom: 02. Sept., Seite 992-1007
1. Verfasser: Focks, Andreas (VerfasserIn)
Weitere Verfasser: Belgers, Dick, Boerwinkel, Marie-Claire, Buijse, Laura, Roessink, Ivo, Van den Brink, Paul J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Validation Study Aquatic ecotoxicology Macroinvertebrates Neonicotinoids Time-variable exposure Toxicokinetic-toxicodynamic modelling Insecticides Nitro Compounds Thiazines mehr... imidacloprid 3BN7M937V8 Thiamethoxam 747IC8B487 thiacloprid DSV3A944A4
Beschreibung
Zusammenfassung:Exposure patterns in ecotoxicological experiments often do not match the exposure profiles for which a risk assessment needs to be performed. This limitation can be overcome by using toxicokinetic-toxicodynamic (TKTD) models for the prediction of effects under time-variable exposure. For the use of TKTD models in the environmental risk assessment of chemicals, it is required to calibrate and validate the model for specific compound-species combinations. In this study, the survival of macroinvertebrates after exposure to the neonicotinoid insecticide was modelled using TKTD models from the General Unified Threshold models of Survival (GUTS) framework. The models were calibrated on existing survival data from acute or chronic tests under static exposure regime. Validation experiments were performed for two sets of species-compound combinations: one set focussed on multiple species sensitivity to a single compound: imidacloprid, and the other set on the effects of multiple compounds for a single species, i.e., the three neonicotinoid compounds imidacloprid, thiacloprid and thiamethoxam, on the survival of the mayfly Cloeon dipterum. The calibrated models were used to predict survival over time, including uncertainty ranges, for the different time-variable exposure profiles used in the validation experiments. From the comparison between observed and predicted survival, it appeared that the accuracy of the model predictions was acceptable for four of five tested species in the multiple species data set. For compounds such as neonicotinoids, which are known to have the potential to show increased toxicity under prolonged exposure, the calibration and validation of TKTD models for survival needs to be performed ideally by considering calibration data from both acute and chronic tests
Beschreibung:Date Completed 11.12.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-018-1940-6