Toward the Repeatability and Robustness of the Local Reference Frame for 3D Shape Matching : An Evaluation

The local reference frame (LRF), as an independent coordinate system constructed on the local 3D surface, is broadly employed in 3D local feature descriptors. The benefits of the LRF include rotational invariance and full 3D spatial information, thereby greatly boosting the distinctiveness of a 3D f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 8 vom: 25. Aug., Seite 3766-3781
1. Verfasser: Yang, Jiaqi (VerfasserIn)
Weitere Verfasser: Xiao, Yang, Cao, Zhiguo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM283458488
003 DE-627
005 20231225040920.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2827330  |2 doi 
028 5 2 |a pubmed24n0944.xml 
035 |a (DE-627)NLM283458488 
035 |a (NLM)29698208 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jiaqi  |e verfasserin  |4 aut 
245 1 0 |a Toward the Repeatability and Robustness of the Local Reference Frame for 3D Shape Matching  |b An Evaluation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The local reference frame (LRF), as an independent coordinate system constructed on the local 3D surface, is broadly employed in 3D local feature descriptors. The benefits of the LRF include rotational invariance and full 3D spatial information, thereby greatly boosting the distinctiveness of a 3D feature descriptor. There are numerous LRF methods in the literature; however, no comprehensive study comparing their repeatability and robustness performance under different application scenarios and nuisances has been conducted. This paper evaluates eight state-of-the-art LRF proposals on six benchmarks with different data modalities (e.g., LiDAR, Kinect, and Space Time) and application contexts (e.g., shape retrieval, 3D registration, and 3D object recognition). In addition, the robustness of each LRF to a variety of nuisances, including varying support radii, Gaussian noise, outliers (shot noise), mesh resolution variation, distance to boundary, keypoint localization error, clutter, occlusion, and partial overlap, is assessed. The experimental study also measures the performance under different keypoint detectors, descriptor matching performance when using different LRFs and feature representation combinations, as well as computational efficiency. Considering the evaluation outcomes, we summarize the traits, advantages, and current limitations of the tested LRF methods 
650 4 |a Journal Article 
700 1 |a Xiao, Yang  |e verfasserin  |4 aut 
700 1 |a Cao, Zhiguo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 8 vom: 25. Aug., Seite 3766-3781  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:8  |g day:25  |g month:08  |g pages:3766-3781 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2827330  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 8  |b 25  |c 08  |h 3766-3781