Too Far to See? Not Really!-Pedestrian Detection With Scale-Aware Localization Policy

A major bottleneck of pedestrian detection lies on the sharp performance deterioration in the presence of small-size pedestrians that are relatively far from the camera. Motivated by the observation that pedestrians of disparate spatial scales exhibit distinct visual appearances, we propose in this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 8 vom: 15. Aug., Seite 3703-3715
1. Verfasser: Zhang, Xiaowei (VerfasserIn)
Weitere Verfasser: Cheng, Li, Li, Bo, Hu, Hai-Miao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM283458399
003 DE-627
005 20231225040920.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2818018  |2 doi 
028 5 2 |a pubmed24n0944.xml 
035 |a (DE-627)NLM283458399 
035 |a (NLM)29698203 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaowei  |e verfasserin  |4 aut 
245 1 0 |a Too Far to See? Not Really!-Pedestrian Detection With Scale-Aware Localization Policy 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A major bottleneck of pedestrian detection lies on the sharp performance deterioration in the presence of small-size pedestrians that are relatively far from the camera. Motivated by the observation that pedestrians of disparate spatial scales exhibit distinct visual appearances, we propose in this paper an active pedestrian detector that explicitly operates over multiple-layer neuronal representations of the input still image. More specifically, convolutional neural nets, such as ResNet and faster R-CNNs, are exploited to provide a rich and discriminative hierarchy of feature representations, as well as initial pedestrian proposals. Here each pedestrian observation of distinct size could be best characterized in terms of the ResNet feature representation at a certain layer of the hierarchy. Meanwhile, initial pedestrian proposals are attained by the faster R-CNNs techniques, i.e., region proposal network and follow-up region of interesting pooling layer employed right after the specific ResNet convolutional layer of interest, to produce joint predictions on the bounding-box proposals' locations and categories (i.e., pedestrian or not). This is engaged as an input to our active detector, where for each initial pedestrian proposal, a sequence of coordinate transformation actions is carried out to determine its proper x-y 2D location and the layer of feature representation, or eventually terminated as being background. Empirically our approach is demonstrated to produce overall lower detection errors on widely used benchmarks, and it works particularly well with far-scale pedestrians. For example, compared with 60.51% log-average miss rate of the state-of-the-art MS-CNN for far-scale pedestrians (those below 80 pixels in bounding-box height) of the Caltech benchmark, the miss rate of our approach is 41.85%, with a notable reduction of 18.66% 
650 4 |a Journal Article 
700 1 |a Cheng, Li  |e verfasserin  |4 aut 
700 1 |a Li, Bo  |e verfasserin  |4 aut 
700 1 |a Hu, Hai-Miao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 8 vom: 15. Aug., Seite 3703-3715  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:8  |g day:15  |g month:08  |g pages:3703-3715 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2818018  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 8  |b 15  |c 08  |h 3703-3715