Inferring pathogen dynamics from temporal count data : the emergence of Xylella fastidiosa in France is probably not recent

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 219(2018), 2 vom: 01. Juli, Seite 824-836
1. Verfasser: Soubeyrand, Samuel (VerfasserIn)
Weitere Verfasser: de Jerphanion, Pauline, Martin, Olivier, Saussac, Mathilde, Manceau, Charles, Hendrikx, Pascal, Lannou, Christian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Bayesian inference emerging plant pathogen infection reservoir introduction date mechanistic-statistical model multi-host pathogen plant-pathogen interaction surveillance data
LEADER 01000caa a22002652 4500
001 NLM283369426
003 DE-627
005 20241110231818.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.15177  |2 doi 
028 5 2 |a pubmed24n1596.xml 
035 |a (DE-627)NLM283369426 
035 |a (NLM)29689134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Soubeyrand, Samuel  |e verfasserin  |4 aut 
245 1 0 |a Inferring pathogen dynamics from temporal count data  |b the emergence of Xylella fastidiosa in France is probably not recent 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2019 
500 |a Date Revised 10.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. 
520 |a Unravelling the ecological structure of emerging plant pathogens persisting in multi-host systems is challenging. In such systems, observations are often heterogeneous with respect to time, space and host species, and may lead to biases of perception. The biased perception of pathogen ecology may be exacerbated by hidden fractions of the whole host population, which may act as infection reservoirs. We designed a mechanistic-statistical approach to help understand the ecology of emerging pathogens by filtering out some biases of perception. This approach, based on SIR (Susceptible-Infected-Removed) models and a Bayesian framework, disentangles epidemiological and observational processes underlying temporal counting data. We applied our approach to French surveillance data on Xylella fastidiosa, a multi-host pathogenic bacterium recently discovered in Corsica, France. A model selection led to two diverging scenarios: one scenario without a hidden compartment and an introduction around 2001, and the other with a hidden compartment and an introduction around 1985. Thus, Xylella fastidiosa was probably introduced into Corsica much earlier than its discovery, and its control could be arduous under the hidden compartment scenario. From a methodological perspective, our approach provides insights into the dynamics of emerging plant pathogens and, in particular, the potential existence of infection reservoirs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Bayesian inference 
650 4 |a emerging plant pathogen 
650 4 |a infection reservoir 
650 4 |a introduction date 
650 4 |a mechanistic-statistical model 
650 4 |a multi-host pathogen 
650 4 |a plant-pathogen interaction 
650 4 |a surveillance data 
700 1 |a de Jerphanion, Pauline  |e verfasserin  |4 aut 
700 1 |a Martin, Olivier  |e verfasserin  |4 aut 
700 1 |a Saussac, Mathilde  |e verfasserin  |4 aut 
700 1 |a Manceau, Charles  |e verfasserin  |4 aut 
700 1 |a Hendrikx, Pascal  |e verfasserin  |4 aut 
700 1 |a Lannou, Christian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 219(2018), 2 vom: 01. Juli, Seite 824-836  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:219  |g year:2018  |g number:2  |g day:01  |g month:07  |g pages:824-836 
856 4 0 |u http://dx.doi.org/10.1111/nph.15177  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 219  |j 2018  |e 2  |b 01  |c 07  |h 824-836