Imaging of copper oxygenation reactions in a bubble flow

Copyright © 2018 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 56(2018), 9 vom: 23. Sept., Seite 826-830
1. Verfasser: Benders, Stefan (VerfasserIn)
Weitere Verfasser: Strassl, Florian, Fenger, Bastian, Blümich, Bernhard, Herres-Pawlis, Sonja, Küppers, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't 1H bubble flow chemical engineering contrast agents magnetic resonance imaging
Beschreibung
Zusammenfassung:Copyright © 2018 John Wiley & Sons, Ltd.
Reactions of gases with liquids play a crucial role in the production of many bulk chemicals. Often, the gas is bubbled into the chosen reactor. Most of the processes at the gas-liquid interface of the bubbles and in their tails are not fully understood and warrant further investigation. For this purpose, NMR imaging or Magnetic Resonance Imaging has been applied to visualize some of the processes in the bubble tail. To generate sufficient contrast, a magnetogenic gas-liquid reaction associated with a change of magnetic state, from diamagnetic to paramagnetic, was employed. In this work, a copper(I)-based compound was oxidized to copper(II) to exploit relaxation contrast. To match the speed of the rising bubbles to the acquisition time of the spin-echo imaging sequence, polyethylene glycol was added to increase the viscosity of the reacting solution. Images of the oxygen ingress into a static solution as well as of oxygen bubbles rising in the solution are presented. In both cases, changes in magnetism were observed, which reported the hydrodynamic processes
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.4742