Superlubricity of 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions

The robust liquid superlubricity of a room-temperature ionic liquid induced by tribochemical reactions is explored in this study. Here, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]TFS) could realize stable superlubricity (μ < 0.01) with water at the interfaces of Si3N4/SiO2. A su...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 18 vom: 08. Mai, Seite 5245-5252
1. Verfasser: Ge, Xiangyu (VerfasserIn)
Weitere Verfasser: Li, Jinjin, Zhang, Chenhui, Wang, Zhongnan, Luo, Jianbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The robust liquid superlubricity of a room-temperature ionic liquid induced by tribochemical reactions is explored in this study. Here, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]TFS) could realize stable superlubricity (μ < 0.01) with water at the interfaces of Si3N4/SiO2. A superlow and steady friction coefficient of 0.002-0.004 could be achieved under neutral conditions (pH of 6.9 ± 0.1) after 600 s of running-in process. Various factors that could affect superlubricity were explored, including concentration of [EMIM]TFS, sliding speed, applied load, and volume of the lubricant. The results reveal that superlubricity can be achieved with [EMIM]TFS aqueous solution under a broad scope of conditions. The results of surface analysis show that a steady composite tribochemical layer comprising [EMIM]TFS, silica, ammonia-containing compounds, and sulfides was formed by tribochemical reactions between [EMIM]TFS and Si3N4 during the running-in period. The film thickness calculation reveals that the achieved superlubricity is in a mixed lubrication regime that comprises boundary lubrication and thin film lubrication. The superlubricity state is governed by a firm composite tribochemical layer, a molecular adsorption layer (electric double layer of [EMIM]TFS), and a fluid layer. The liquid superlubricity achieved by the ionic liquid is helpful for the development of new ionic liquids with superlubricity characteristics and is of great significance for scientific understanding as well as engineering applications
Beschreibung:Date Completed 10.09.2018
Date Revised 10.09.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00867