An Embarrassingly Simple Approach to Visual Domain Adaptation

We show that it is possible to achieve high-quality domain adaptation without explicit adaptation. The nature of the classification problem means that when samples from the same class in different domains are sufficiently close, and samples from differing classes are separated by large enough margin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 7 vom: 13. Juli, Seite 3403-3417
1. Verfasser: Lu, Hao (VerfasserIn)
Weitere Verfasser: Shen, Chunhua, Cao, Zhiguo, Xiao, Yang, van den Hengel, Anton
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM283198575
003 DE-627
005 20231225035941.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2819503  |2 doi 
028 5 2 |a pubmed24n0943.xml 
035 |a (DE-627)NLM283198575 
035 |a (NLM)29671743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Hao  |e verfasserin  |4 aut 
245 1 3 |a An Embarrassingly Simple Approach to Visual Domain Adaptation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We show that it is possible to achieve high-quality domain adaptation without explicit adaptation. The nature of the classification problem means that when samples from the same class in different domains are sufficiently close, and samples from differing classes are separated by large enough margins, there is a high probability that each will be classified correctly. Inspired by this, we propose an embarrassingly simple yet effective approach to domain adaptation-only the class mean is used to learn class-specific linear projections. Learning these projections is naturally cast into a linear-discriminant-analysis-like framework, which gives an efficient, closed form solution. Furthermore, to enable to application of this approach to unsupervised learning, an iterative validation strategy is developed to infer target labels. Extensive experiments on cross-domain visual recognition demonstrate that, even with the simplest formulation, our approach outperforms existing non-deep adaptation methods and exhibits classification performance comparable with that of modern deep adaptation methods. An analysis of potential issues effecting the practical application of the method is also described, including robustness, convergence, and the impact of small sample sizes 
650 4 |a Journal Article 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
700 1 |a Cao, Zhiguo  |e verfasserin  |4 aut 
700 1 |a Xiao, Yang  |e verfasserin  |4 aut 
700 1 |a van den Hengel, Anton  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 7 vom: 13. Juli, Seite 3403-3417  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:7  |g day:13  |g month:07  |g pages:3403-3417 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2819503  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 7  |b 13  |c 07  |h 3403-3417