Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 25 vom: 22. Juni, Seite e1706981
1. Verfasser: Li, Zhenli (VerfasserIn)
Weitere Verfasser: Zhang, Han, Han, Jun, Chen, Yu, Lin, Han, Yang, Tian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MXene chemotherapy hepatocellular carcinoma mesoporous silica nanomedicine photothermal therapy Silicon Dioxide 7631-86-9 Doxorubicin 80168379AG
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hepatocellular carcinoma (HCC) is one of the most common and deadly gastrointestinal malignancies. Given its insensitivity to traditional systematic chemotherapy, new therapeutic strategies for efficient HCCs treatment are urgently needed. Here, the development of a novel 2D MXene-based composite nanoplatform for highly efficient and synergistic chemotherapy and photothermal hyperthermia against HCC is reported. A surface-nanopore engineering strategy is developed for the MXenes' surface functionalization, which achieves the uniform coating of a thin mesoporous-silica layer onto the surface of 2D Ti3 C2 MXene (Ti3 C2 mMSNs). This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery, enhanced hydrophilicity/dispersity, and abundant surface chemistry for targeting engineering. Systematic in vitro and in vivo evaluations have demonstrated the high active-targeting capability of arginine-glycine-aspartic acid (RGD)-targeting Ti3 C2 @mMSNs into tumor, and the synergistic chemotherapy (contributed by the mesoporous shell) and photothermal hyperthermia (contributed by the Ti3 C2 MXene core) completely eradicate the tumor without obvious reoccurrence. This work not only provides a novel strategy for efficiently combating HCC by developing MXene-based composite nanoplatforms, but also paves a new way for extending the biomedical applications of MXenes by surface-nanopore engineering
Beschreibung:Date Completed 07.03.2019
Date Revised 30.03.2022
published: Print-Electronic
ErratumIn: Adv Mater. 2019 Jul;31(27):e1902282. - PMID 31355504
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201706981