Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes

Copyright © 2018 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 271(2018) vom: 17. Juni, Seite 34-39
1. Verfasser: Hu, Qiannan (VerfasserIn)
Weitere Verfasser: Zhang, Shuoxin, Huang, Bingru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Auxin Cell division Heat stress Strigolactones Tall fescue Indoleacetic Acids Plant Growth Regulators
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier B.V. All rights reserved.
Strigolactones (SL) have recently been found to play roles in regulating root development. However, it remains unclear how SL may mediate root elongation of perennial grass species under different temperatures that differentially affect root growth. The objectives of this study were to examine effects of SL on root elongation of tall fescue and to examine the interactive effects of SL and auxin in regulating root growth under both non-stress and heat stress conditions. Tall fescue (cv. 'Kentuck-31') plants were treated with GR24 (a synthetic strigolactones), NAA (α-naphthylacetic acid), or NPA (auxin transport inhibitor N-1-naphthylphalamic acid) or their combination under non-stress control and heat stress (35/30 °C) in growth chamber. Crown root elongation was evaluated by measuring root length. Cell number and length in root tips were measured under confocal microscope. Expression levels of genes related to cell growth, SL signaling and auxin transport were determined. SL promoted crown root elongation in tall fescue under normal temperature and heat stress, and alleviated heat-inhibition of root growth. GR24-enhanced root elongation was accompanied with the increase in cell numbers, up-regulation of cell cycle-related genes, and down-regulation auxin transport-related genes in crown root tips of tall fescue. The positive effects of SL for promoting crown root elongation in tall fescue under both non-stress and heat stress could be mainly due to its regulation of cell division and involve the interference of auxin transport
Beschreibung:Date Completed 27.08.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2018.03.008