Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases

Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that rend...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 17 vom: 01. Mai, Seite 5052-5059
1. Verfasser: Speziale, Chiara (VerfasserIn)
Weitere Verfasser: Ghanbari, Reza, Mezzenga, Raffaele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that renders these systems suitable for crystallizing membrane proteins with large extracellular domains. Their mechanical properties are supposed to be substantially different from those of traditional cubic phases. Rheological measurements were carried out on cubic phases of both Pn3 m and Ia3 d symmetries. It was verified that these ultraswollen cubic phases are less rigid than the normal cubic phases, with the Pn3 m being softer that the Ia3 d ones. Furthermore, for the Pn3 m case, the longest relaxation time is shown to decrease logarithmically with increasing surface area per unit volume, proving the critical role of the density of interfaces in establishing the macroscopic viscoelastic properties of the bicontinuous cubic phases
Beschreibung:Date Completed 10.09.2018
Date Revised 10.09.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00737