Retinal Microaneurysms Detection Using Local Convergence Index Features

Retinal microaneurysms (MAs) are the earliest clinical sign of diabetic retinopathy disease. Detection of MAs is crucial for the early diagnosis of diabetic retinopathy and prevention of blindness. In this paper, a novel and reliable method for automatic detection of MAs in retinal images is propose...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 7 vom: 31. Juli, Seite 3300-3315
1. Verfasser: Dashtbozorg, Behdad (VerfasserIn)
Weitere Verfasser: Zhang, Jiong, Huang, Fan, Ter Haar Romeny, Bart M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM282900896
003 DE-627
005 20231225035024.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2815345  |2 doi 
028 5 2 |a pubmed24n0943.xml 
035 |a (DE-627)NLM282900896 
035 |a (NLM)29641408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dashtbozorg, Behdad  |e verfasserin  |4 aut 
245 1 0 |a Retinal Microaneurysms Detection Using Local Convergence Index Features 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Retinal microaneurysms (MAs) are the earliest clinical sign of diabetic retinopathy disease. Detection of MAs is crucial for the early diagnosis of diabetic retinopathy and prevention of blindness. In this paper, a novel and reliable method for automatic detection of MAs in retinal images is proposed. In the first stage of the proposed method, several preliminary microaneurysm candidates are extracted using a gradient weighting technique and an iterative thresholding approach. In the next stage, in addition to intensity and shape descriptors, a new set of features based on local convergence index filters is extracted for each candidate. Finally, the collective set of features is fed to a hybrid sampling/boosting classifier to discriminate the MAs from non-MAs candidates. The method is evaluated on images with different resolutions and modalities (color and scanning laser ophthalmoscope) using six publicly available data sets including the retinopathy online challenges (ROC) data set. The proposed method achieves an average sensitivity score of 0.471 on the ROC data set outperforming state-of-the-art approaches in an extensive comparison. The experimental results on the other five data sets demonstrate the effectiveness and robustness of the proposed MAs detection method regardless of different image resolutions and modalities 
650 4 |a Journal Article 
700 1 |a Zhang, Jiong  |e verfasserin  |4 aut 
700 1 |a Huang, Fan  |e verfasserin  |4 aut 
700 1 |a Ter Haar Romeny, Bart M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 7 vom: 31. Juli, Seite 3300-3315  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:7  |g day:31  |g month:07  |g pages:3300-3315 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2815345  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 7  |b 31  |c 07  |h 3300-3315