Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 20 vom: 14. Mai, Seite e1706570
1. Verfasser: Wunner, Felix M (VerfasserIn)
Weitere Verfasser: Wille, Marie-Luise, Noonan, Thomas G, Bas, Onur, Dalton, Paul D, De-Juan-Pardo, Elena M, Hutmacher, Dietmar W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing additive manufacturing electrospinning electrostatics in-process control
LEADER 01000naa a22002652 4500
001 NLM282822933
003 DE-627
005 20231225034821.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201706570  |2 doi 
028 5 2 |a pubmed24n0942.xml 
035 |a (DE-627)NLM282822933 
035 |a (NLM)29633443 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wunner, Felix M  |e verfasserin  |4 aut 
245 1 0 |a Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The additive manufacturing of highly ordered, micrometer-scale scaffolds is at the forefront of tissue engineering and regenerative medicine research. The fabrication of scaffolds for the regeneration of larger tissue volumes, in particular, remains a major challenge. A technology at the convergence of additive manufacturing and electrospinning-melt electrospinning writing (MEW)-is also limited in thickness/volume due to the accumulation of excess charge from the deposited material repelling and hence, distorting scaffold architectures. The underlying physical principles are studied that constrain MEW of thick, large volume scaffolds. Through computational modeling, numerical values variable working distances are established respectively, which maintain the electrostatic force at a constant level during the printing process. Based on the computational simulations, three voltage profiles are applied to determine the maximum height (exceeding 7 mm) of a highly ordered large volume scaffold. These thick MEW scaffolds have fully interconnected pores and allow cells to migrate and proliferate. To the best of the authors knowledge, this is the first study to report that z-axis adjustment and increasing the voltage during the MEW process allows for the fabrication of high-volume scaffolds with uniform morphologies and fiber diameters 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a additive manufacturing 
650 4 |a electrospinning 
650 4 |a electrostatics 
650 4 |a in-process control 
700 1 |a Wille, Marie-Luise  |e verfasserin  |4 aut 
700 1 |a Noonan, Thomas G  |e verfasserin  |4 aut 
700 1 |a Bas, Onur  |e verfasserin  |4 aut 
700 1 |a Dalton, Paul D  |e verfasserin  |4 aut 
700 1 |a De-Juan-Pardo, Elena M  |e verfasserin  |4 aut 
700 1 |a Hutmacher, Dietmar W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 20 vom: 14. Mai, Seite e1706570  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:20  |g day:14  |g month:05  |g pages:e1706570 
856 4 0 |u http://dx.doi.org/10.1002/adma.201706570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 20  |b 14  |c 05  |h e1706570