|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM282822291 |
003 |
DE-627 |
005 |
20231225034820.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201706918
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0942.xml
|
035 |
|
|
|a (DE-627)NLM282822291
|
035 |
|
|
|a (NLM)29633385
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Kun-Ching
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Deep-Ultraviolet Hyperbolic Metacavity Laser
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a SPASER
|
650 |
|
4 |
|a deep-ultraviolet light
|
650 |
|
4 |
|a hyperbolic metamaterials
|
650 |
|
4 |
|a metacavities
|
650 |
|
4 |
|a nanolasers
|
700 |
1 |
|
|a Ku, Chen-Ta
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hsieh, Chiieh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuo, Hao-Chung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Yuh-Jen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tsai, Din Ping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 21 vom: 06. Mai, Seite e1706918
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:21
|g day:06
|g month:05
|g pages:e1706918
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201706918
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 21
|b 06
|c 05
|h e1706918
|