Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on Inhibiting Zn2+-Mediated Amyloid β-Protein Aggregation

Aggregation of amyloid β-proteins (Aβ) mediated by metal ions such as Zn2+ has been suggested to be implicated in the progression of Alzheimer's disease (AD). Hence, development of bifunctional agents capable of inhibiting Aβ aggregation and modulating metal-Aβ species is an effective strategy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 17 vom: 01. Mai, Seite 5106-5115
1. Verfasser: Li, Xi (VerfasserIn)
Weitere Verfasser: Xie, Baolong, Dong, Xiaoyan, Sun, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amyloid beta-Peptides Imino Acids Muramidase EC 3.2.1.17 Zinc J41CSQ7QDS iminodiacetic acid XQM2L81M8Z
Beschreibung
Zusammenfassung:Aggregation of amyloid β-proteins (Aβ) mediated by metal ions such as Zn2+ has been suggested to be implicated in the progression of Alzheimer's disease (AD). Hence, development of bifunctional agents capable of inhibiting Aβ aggregation and modulating metal-Aβ species is an effective strategy for the treatment of AD. In this work, we modified iminodiacetic acid (IDA) onto human lysozyme (hLys) surface to create an inhibitor of Zn2+-mediated Aβ aggregation and cytotoxicity. The IDA-modified hLys (IDA-hLys) retained the stability and biocompatibility of native hLys. Extensive biophysical and biological analyses indicated that IDA-hLys significantly attenuated Zn2+-mediated Aβ aggregation and cytotoxicity due to its strong binding affinity for Zn2+, whereas native hLys showed little effect. Stopped-flow fluorescence spectroscopy showed that IDA-hLys could protect Aβ from Zn2+-induced aggregation and rapidly depolymerize Zn2+-Aβ aggregates. The research indicates that IDA-hLys is a bifunctional agent capable of inhibiting Aβ fibrillization and modulating Zn2+-mediated Aβ aggregation and cytotoxicity as a strong Zn2+ chelator
Beschreibung:Date Completed 14.03.2019
Date Revised 14.03.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00254