Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves
Copyright © 2018 Elsevier GmbH. All rights reserved.
Veröffentlicht in: | Journal of plant physiology. - 1979. - 224-225(2018) vom: 15. Mai, Seite 112-120 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Journal of plant physiology |
Schlagworte: | Journal Article Cold stress Cucumber De-acclimation Galactosidase Raffinose family oligosaccharides Subcellular compartment Plant Proteins alpha-Galactosidase EC 3.2.1.22 mehr... |
Zusammenfassung: | Copyright © 2018 Elsevier GmbH. All rights reserved. Raffinose family oligosaccharides (RFOs) accumulate under stress conditions in many plants and have been suggested to act as stress protectants. To elucidate the metabolic process of RFOs under cold stress, levels of RFOs, and related carbohydrates, the expression and activities of main metabolic enzymes and their subcellular compartments were investigated during low-temperature treatment and during the recovery period in cucumber leaves. Cold stress induced the accumulation of stachyose in vacuoles, galactinol in vacuoles and cytosol, and sucrose and raffinose in vacuoles, cytosol, and chloroplasts. After cold stress removal, levels of these sugars decreased gradually in the respective compartments. Among four galactinol synthase genes (CsGS), CsGS1 was not affected by cold stress, while the other three CsGSs were up-regulated by low temperature. RNA levels of acid-α-galactosidase (GAL) 3 and alkaline-α-galactosidase (AGA) 2 and 3, and the activities of GAL and AGA, were up-regulated after cold stress removal. GAL3 protein and GAL activity were exclusively located in vacuoles, whereas AGA2 and AGA 3 proteins were found in cytosol and chloroplasts, respectively. The results indicate that RFOs, which accumulated during cold stress in different subcellular compartments in cucumber leaves, could be catabolized in situ by different galactosidases after stress removal |
---|---|
Beschreibung: | Date Completed 20.09.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1618-1328 |
DOI: | 10.1016/j.jplph.2018.03.012 |