Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 21 vom: 02. Mai, Seite e1707166
1. Verfasser: Zhang, Xu (VerfasserIn)
Weitere Verfasser: Munir, Rahim, Xu, Zhuo, Liu, Yucheng, Tsai, Hsinhan, Nie, Wanyi, Li, Jianbo, Niu, Tianqi, Smilgies, Detlef-M, Kanatzidis, Mercouri G, Mohite, Aditya D, Zhao, Kui, Amassian, Aram, Liu, Shengzhong Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ruddlesden-Popper perovskites in situ diagnostics phase transitions solar cells solution processing
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA)2 (MA)3 Pb4 I13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA)2 (MA)3 Pb4 I13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices
Beschreibung:Date Completed 06.08.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201707166