Recognition of protein allosteric states and residues : Machine learning approaches

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 20 vom: 30. Juli, Seite 1481-1490
1. Verfasser: Zhou, Hongyu (VerfasserIn)
Weitere Verfasser: Dong, Zheng, Tao, Peng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't allostery classification machine learning molecular dynamics protein Proteins
LEADER 01000naa a22002652 4500
001 NLM282536140
003 DE-627
005 20231225034138.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25218  |2 doi 
028 5 2 |a pubmed24n0941.xml 
035 |a (DE-627)NLM282536140 
035 |a (NLM)29604117 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Hongyu  |e verfasserin  |4 aut 
245 1 0 |a Recognition of protein allosteric states and residues  |b Machine learning approaches 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.09.2019 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a Allostery is a process by which proteins transmit the effect of perturbation at one site to a distal functional site upon certain perturbation. As an intrinsically global effect of protein dynamics, it is difficult to associate protein allostery with individual residues, hindering effective selection of key residues for mutagenesis studies. The machine learning models including decision tree (DT) and artificial neural network (ANN) models were applied to develop classification model for a cell signaling allosteric protein with two states showing extremely similar tertiary structures in both crystallographic structures and molecular dynamics simulations. Both DT and ANN models were developed with 75% and 80% of predicting accuracy, respectively. Good agreement between machine learning models and previous experimental as well as computational studies of the same protein validates this approach as an alternative way to analyze protein dynamics simulations and allostery. In addition, the difference of distributions of key features in two allosteric states also underlies the population shift hypothesis of dynamics-driven allostery model. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a allostery 
650 4 |a classification 
650 4 |a machine learning 
650 4 |a molecular dynamics 
650 4 |a protein 
650 7 |a Proteins  |2 NLM 
700 1 |a Dong, Zheng  |e verfasserin  |4 aut 
700 1 |a Tao, Peng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 20 vom: 30. Juli, Seite 1481-1490  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:20  |g day:30  |g month:07  |g pages:1481-1490 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25218  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 20  |b 30  |c 07  |h 1481-1490