|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM282529357 |
003 |
DE-627 |
005 |
20250223091536.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201800548
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0941.xml
|
035 |
|
|
|a (DE-627)NLM282529357
|
035 |
|
|
|a (NLM)29603430
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Jiaqiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Diatomite-Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D graphdiyne
|
650 |
|
4 |
|a catalyst supports
|
650 |
|
4 |
|a diatomite
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a massive production
|
700 |
1 |
|
|a Xu, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Ziqian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Jingyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Changguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhongfan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 20 vom: 04. Mai, Seite e1800548
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:20
|g day:04
|g month:05
|g pages:e1800548
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201800548
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 20
|b 04
|c 05
|h e1800548
|