|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM282529349 |
003 |
DE-627 |
005 |
20231225034128.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201800472
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0941.xml
|
035 |
|
|
|a (DE-627)NLM282529349
|
035 |
|
|
|a (NLM)29603429
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Beyer, Hannes M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synthetic Biology Makes Polymer Materials Count
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.03.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi-input-processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology-derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse-counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a biomaterials
|
650 |
|
4 |
|a materials systems
|
650 |
|
4 |
|a optogenetics
|
650 |
|
4 |
|a synthetic biology
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Engesser, Raphael
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hörner, Maximilian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koschmieder, Julian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Beyer, Peter
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Timmer, Jens
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zurbriggen, Matias D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weber, Wilfried
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 21 vom: 30. Mai, Seite e1800472
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:21
|g day:30
|g month:05
|g pages:e1800472
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201800472
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 21
|b 30
|c 05
|h e1800472
|