High Photoinduced Ordering and Controllable Photostability of Hydrophilic Azobenzene Material Based on Relative Humidity

Azobenzene materials provide an effective way for liquid crystal (LC) alignment besides traditional rubbing technology. A strong relationship between relative humidity (RH) and the photoalignment quality of hydrophilic azobenzene dye brilliant yellow (BY) has been investigated. Good photoalignment q...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 15 vom: 17. Apr., Seite 4465-4472
1. Verfasser: Shi, Yue (VerfasserIn)
Weitere Verfasser: Zhao, Chenxiang, Ho, Jacob Yeuk-Lung, Song, Feng, Chigrinov, Vladimir G, Luo, Dan, Kwok, Hoi-Sing, Sun, Xiao Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Azobenzene materials provide an effective way for liquid crystal (LC) alignment besides traditional rubbing technology. A strong relationship between relative humidity (RH) and the photoalignment quality of hydrophilic azobenzene dye brilliant yellow (BY) has been investigated. Good photoalignment quality can only be ensured at about 40% RH or below. On the other hand, the photostability of the alignment layer is also influenced dramatically by RH. The rewritability can be guaranteed at extremely low RH (≤10%). It is gradually lost with increasing RH, and the alignment layer becomes photostable against further light exposure when at 40% RH or above. Therefore, the BY photoalignment layer can be tuned from rewritable to photostable by simply adjusting RH, and thus multistep photopatterned alignments can be obtained and reserved based on this method. Similar properties are also expected for other hydrophilic azobenzene photoalignment materials, where the specific RH values may vary correspondingly. The reason is due to the strong intermolecular interaction and J-aggregate formation of BY molecules with water insertion. Moreover, the lyotropic LC formed by J-aggregated BY molecules in aqueous solution is reported here
Beschreibung:Date Completed 10.09.2018
Date Revised 10.09.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b00039