|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM282336109 |
003 |
DE-627 |
005 |
20231225033708.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201707635
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0941.xml
|
035 |
|
|
|a (DE-627)NLM282336109
|
035 |
|
|
|a (NLM)29578268
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a He, Sisi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Chemical-to-Electricity Carbon
|b Water Device
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The ability to release, as electrical energy, potential energy stored at the water:carbon interface is attractive, since water is abundant and available. However, many previous reports of such energy converters rely on either flowing water or specially designed ionic aqueous solutions. These requirements restrict practical application, particularly in environments with quiescent water. Here, a carbon-based chemical-to-electricity device that transfers the chemical energy to electrical form when coming into contact with quiescent deionized water is reported. The device is built using carbon nanotube yarns, oxygen content of which is modulated using oxygen plasma-treatment. When immersed in water, the device discharges electricity with a power density that exceeds 700 mW m-2 , one order of magnitude higher than the best previously published result. X-ray absorption and density functional theory studies support a mechanism of operation that relies on the polarization of sp2 hybridized carbon atoms. The devices are incorporated into a flexible fabric for powering personal electronic devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon nanotubes
|
650 |
|
4 |
|a chemical
|
650 |
|
4 |
|a electricity
|
650 |
|
4 |
|a energy
|
650 |
|
4 |
|a water
|
700 |
1 |
|
|a Zhang, Yueyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiu, Longbin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Longsheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Yun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Peining
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Bingjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Xiaojie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yajie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dinh, Cao Thang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a De Luna, Phil
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Banis, Mohammad Norouzi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhiqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sham, Tsun-Kong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Xingao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Huisheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sargent, Edward H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 18 vom: 16. Mai, Seite e1707635
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:18
|g day:16
|g month:05
|g pages:e1707635
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201707635
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 18
|b 16
|c 05
|h e1707635
|