Individually Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance

Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorabl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 15 vom: 17. Apr., Seite 4427-4436
1. Verfasser: Semenikhin, Nikolay S (VerfasserIn)
Weitere Verfasser: Kadasala, Naveen Reddy, Moon, Robert J, Perry, Joseph W, Sandhage, Kenneth H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Gold 7440-57-5 Cellulose 9004-34-6
Beschreibung
Zusammenfassung:Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorable wet chemical process for converting commercially available CNCs into individual aspected gold nanoshell-bearing particles with tunable surface plasmon resonance bands. Using a rational cellulose functionalization approach, stable suspensions of positively charged CNCs have been generated. Continuous, conductive, nanocrystalline gold coatings were then applied to the individual, electrostatically stabilized CNCs via decoration with 1-3 nm diameter gold particles followed by electroless gold deposition. Optical analyses indicated that these core-shell nanoparticles exhibited two surface plasmon absorbance bands, with one located in the visible range (near 550 nm) and the other at near infrared (NIR) wavelengths. The NIR band possessed a peak maximum wavelength that could be tuned over a wide range (1000-1300 nm) by adjusting the gold coating thickness. The bandwidth and wavelength of the peak maximum of the NIR band were also sensitive to the particle size distribution and could be further refined by fractionation using viscosity gradient centrifugation
Beschreibung:Date Completed 07.03.2019
Date Revised 07.03.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b03868