Silicone Microemulsion Structures Are Maintained During Polymerization with Reactive Surfactants
Bicontinuous microemulsions exhibit domain structures on the nanoscale (<20 nm). Normally, such fine details are lost during the conversion from a fluid microemulsion to solid elastomeric materials, as a consequence of interfacial destabilization via polymerization of either the oil phase or mono...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 14 vom: 10. Apr., Seite 4374-4381 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Bicontinuous microemulsions exhibit domain structures on the nanoscale (<20 nm). Normally, such fine details are lost during the conversion from a fluid microemulsion to solid elastomeric materials, as a consequence of interfacial destabilization via polymerization of either the oil phase or monomers in the aqueous phase. Very little is known about the polymerization of silicone microemulsions and the morphological changes that occur upon transition from a nanostructured liquid to a solid matrix. Silicone microemulsions polymerized by free radical (aqueous phase) and condensation (silicone phase) processes, respectively, were characterized by small-angle X-ray scattering and transmission electron microscopy. It was found that cross-linking of the silicone phase alone led, over time, to large increase of the size of the microemulsion nanodomains. By contrast, photoinduced polymerization of a reactive surfactant and acrylic monomers in the aqueous phase was effective at retaining bicontinuous nanomorphology, irrespective of the degree of cross-linking of the silicone phase |
---|---|
Beschreibung: | Date Completed 10.09.2018 Date Revised 10.09.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b00240 |