|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM281906599 |
003 |
DE-627 |
005 |
20231225032716.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201706885
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0939.xml
|
035 |
|
|
|a (DE-627)NLM281906599
|
035 |
|
|
|a (NLM)29534320
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Takahashi, Riku
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation. A low-melting-point alloy that can transform from a load-bearing solid state to a free-deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single-component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel-structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a composite materials
|
650 |
|
4 |
|a double-network gels
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a low-melting-point alloys
|
650 |
|
4 |
|a thermal responsive materials
|
700 |
1 |
|
|a Sun, Tao Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Saruwatari, Yoshiyuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kurokawa, Takayuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a King, Daniel R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Jian Ping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 16 vom: 23. Apr., Seite e1706885
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:16
|g day:23
|g month:04
|g pages:e1706885
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201706885
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 16
|b 23
|c 04
|h e1706885
|