Incorporating BIRD-based homodecoupling in the dual-optimized, inverted 1 JCC 1,n-ADEQUATE experiment

Copyright © 2018 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 56(2018), 10 vom: 12. Okt., Seite 1029-1036
1. Verfasser: Saurí, Josep (VerfasserIn)
Weitere Verfasser: Bermel, Wolfgang, Parella, Teodor, Thomas Williamson, R, Martin, Gary E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Copyright © 2018 John Wiley & Sons, Ltd.
1,n-ADEQUATE is a powerful NMR technique for elucidating the structure of proton-deficient small molecules that can help establish the carbon skeleton of a given molecule by providing long-range three-bond 13 C─13 C correlations. Care must be taken when using the experiment to identify the simultaneous presence of one-bond 13 C─13 C correlations that are not filtered out, unlike the HMBC experiment that has a low-pass J-filter to filter 1 JCH responses out. Dual-optimized, inverted 1 JCC 1,n-ADEQUATE is an improved variant of the experiment that affords broadband inversion of direct responses, obviating the need to take additional steps to identify these correlations. Even though ADEQUATE experiments can now be acquired in a reasonable amount of experimental time if a cryogenic probe is available, low sensitivity is still the main impediment limiting the application of this elegant experiment. Here, we wish to report a further refinement that incorporates real-time bilinear rotation decoupling-based homodecoupling methodology into the dual-optimized, inverted 1 JCC 1,n-ADEQUATE pulse sequence. Improved sensitivity and resolution are achieved by collapsing homonuclear proton-proton couplings from the observed multiplets for most spin systems. The application of the method is illustrated with several model compounds
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.4732