|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM281775575 |
003 |
DE-627 |
005 |
20231225032418.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.14120
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0939.xml
|
035 |
|
|
|a (DE-627)NLM281775575
|
035 |
|
|
|a (NLM)29520931
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Teets, Aaron
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.12.2018
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 John Wiley & Sons Ltd.
|
520 |
|
|
|a A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Howland Forest
|
650 |
|
4 |
|a biomass increment
|
650 |
|
4 |
|a canopy position
|
650 |
|
4 |
|a climate change
|
650 |
|
4 |
|a dendrochronology
|
650 |
|
4 |
|a forest carbon cycle
|
650 |
|
4 |
|a tree growth response
|
700 |
1 |
|
|a Fraver, Shawn
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weiskittel, Aaron R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hollinger, David Y
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 24(2018), 8 vom: 09. Aug., Seite 3587-3602
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2018
|g number:8
|g day:09
|g month:08
|g pages:3587-3602
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.14120
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2018
|e 8
|b 09
|c 08
|h 3587-3602
|