Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 41 vom: 01. Okt., Seite e1706750 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review chemical fuels energy dissipation self-assembly transient nanostructures |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Dissipative self-assembly leads to structures and materials that exist away from equilibrium by continuously exchanging energy and materials with the external environment. Although this mode of self-assembly is ubiquitous in nature, where it gives rise to functions such as signal processing, motility, self-healing, self-replication, and ultimately life, examples of dissipative self-assembly processes in man-made systems are few and far between. Herein, recent progress in developing diverse synthetic dissipative self-assembly systems is discussed. The systems reported thus far can be categorized into three classes, in which: i) the fuel chemically modifies the building blocks, thus triggering their self-assembly, ii) the fuel acts as a template interacting with the building blocks noncovalently, and iii) transient states are induced by the addition of two mutually exclusive stimuli. These early studies give rise to materials that would be difficult to obtain otherwise, including hydrogels with programmable lifetimes, vesicular nanoreactors, and membranes exhibiting transient conductivity |
---|---|
Beschreibung: | Date Completed 11.10.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201706750 |