Enhanced Hydrothermal Stability of γ-Al2O3 Catalyst Supports with Alkyl Phosphonate Coatings
In this study, monolayers formed from organophosphonic acids were employed to stabilize porous γ-Al2O3, both as a single component and as a support for Pt nanoparticle catalysts, during exposure to hydrothermal conditions. To provide a baseline, structural changes of uncoated γ-Al2O3 catalysts under...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 12 vom: 27. März, Seite 3619-3625 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | In this study, monolayers formed from organophosphonic acids were employed to stabilize porous γ-Al2O3, both as a single component and as a support for Pt nanoparticle catalysts, during exposure to hydrothermal conditions. To provide a baseline, structural changes of uncoated γ-Al2O3 catalysts under model aqueous phase reforming conditions (liquid water at 200 °C and autogenic pressure) were examined over the course of 20 h. These changes were characterized by X-ray diffraction, NMR spectroscopy, N2 physisorption, and IR spectroscopy. It was demonstrated that γ-alumina was rapidly converted into a hydrated boehmite (AlOOH) phase with significantly decreased surface area. Deposition of alkyl phosphonate groups on γ-alumina drastically inhibited the formation of boehmite, thereby maintaining its high specific surface area over 20 h of treatment. 27Al MAS NMR spectra demonstrated that hydrothermal stability increased with alkyl tail length despite lower P coverages. Although the inhibition of boehmite formation by the phosphonic acids was attributed primarily to the formation of Al2O3-PO x bonds, it was found that use of longer-chain octadecylphosphonic acids led to the most pronounced effect. Phosphonate coatings on Pt/γ-Al2O3 improved stability without adversely affecting the rate of a model reaction, catalytic hydrogenation of 1-hexene |
---|---|
Beschreibung: | Date Completed 06.07.2018 Date Revised 06.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b00465 |