Robust Short-Lag Spatial Coherence Imaging

Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not con...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 65(2018), 3 vom: 01. März, Seite 366-377
1. Verfasser: Nair, Arun Asokan (VerfasserIn)
Weitere Verfasser: Tran, Trac Duy, Bell, Muyinatu A Lediju
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM281624704
003 DE-627
005 20231225032048.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2017.2780084  |2 doi 
028 5 2 |a pubmed24n0938.xml 
035 |a (DE-627)NLM281624704 
035 |a (NLM)29505405 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nair, Arun Asokan  |e verfasserin  |4 aut 
245 1 0 |a Robust Short-Lag Spatial Coherence Imaging 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2019 
500 |a Date Revised 28.05.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not consider the content of images formed with different lags, and thus does not exploit the differences in tissue texture at each short-lag value. Our proposed method improves SLSC imaging by weighting the addition of lag values (i.e., M-weighting) and by applying robust principal component analysis (RPCA) to search for a low-dimensional subspace for projecting coherence images created with different lag values. The RPCA-based projections are considered to be denoised versions of the originals that are then weighted and added across lags to yield a final robust SLSC (R-SLSC) image. Our approach was tested on simulation, phantom, and in vivo liver data. Relative to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22 dB, 2.54, and 2.36, respectively, when averaged over simulated, phantom, and in vivo data and over all lags considered, which corresponds to mean improvements of 96.4%, 121.2%, and 120.5%, respectively. When compared with SLSC images, the corresponding mean improvements with R-SLSC images were 7.38 dB, 1.52, and 1.30, respectively (i.e., mean improvements of 14.5%, 50.5%, and 43.2%, respectively). Results show great promise for smoothing out the tissue texture of SLSC images and enhancing anechoic or hypoechoic target visibility at higher lag values, which could be useful in clinical tasks such as breast cyst visualization, liver vessel tracking, and obese patient imaging 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Tran, Trac Duy  |e verfasserin  |4 aut 
700 1 |a Bell, Muyinatu A Lediju  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 65(2018), 3 vom: 01. März, Seite 366-377  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:65  |g year:2018  |g number:3  |g day:01  |g month:03  |g pages:366-377 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2017.2780084  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 65  |j 2018  |e 3  |b 01  |c 03  |h 366-377