Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 218(2018), 4 vom: 01. Juni, Seite 1558-1569
1. Verfasser: Kurokawa, Yusuke (VerfasserIn)
Weitere Verfasser: Nagai, Keisuke, Huan, Phung Danh, Shimazaki, Kousuke, Qu, Huangqi, Mori, Yoshinao, Toda, Yosuke, Kuroha, Takeshi, Hayashi, Nagao, Aiga, Saori, Itoh, Jun-Ichi, Yoshimura, Atsushi, Sasaki-Sekimoto, Yuko, Ohta, Hiroyuki, Shimojima, Mie, Malik, Al Imran, Pedersen, Ole, Colmer, Timothy David, Ashikari, Motoyuki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Oryza sativa air film epicuticular waxes primary alcohol submergence tolerance superhydrophobic underwater photosynthesis wax biosynthesis mehr... Gases Plant Proteins Waxes
LEADER 01000naa a22002652 4500
001 NLM281552355
003 DE-627
005 20231225031908.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.15070  |2 doi 
028 5 2 |a pubmed24n0938.xml 
035 |a (DE-627)NLM281552355 
035 |a (NLM)29498045 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kurokawa, Yusuke  |e verfasserin  |4 aut 
245 1 0 |a Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.10.2019 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a GENBANK: LC363889, LC363890 
500 |a CommentIn: New Phytol. 2018 Jun;218(4):1298-1300. - PMID 29738087 
500 |a Citation Status MEDLINE 
520 |a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. 
520 |a Floods impede gas (O2 and CO2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Oryza sativa 
650 4 |a air film 
650 4 |a epicuticular waxes 
650 4 |a primary alcohol 
650 4 |a submergence tolerance 
650 4 |a superhydrophobic 
650 4 |a underwater photosynthesis 
650 4 |a wax biosynthesis 
650 7 |a Gases  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Waxes  |2 NLM 
700 1 |a Nagai, Keisuke  |e verfasserin  |4 aut 
700 1 |a Huan, Phung Danh  |e verfasserin  |4 aut 
700 1 |a Shimazaki, Kousuke  |e verfasserin  |4 aut 
700 1 |a Qu, Huangqi  |e verfasserin  |4 aut 
700 1 |a Mori, Yoshinao  |e verfasserin  |4 aut 
700 1 |a Toda, Yosuke  |e verfasserin  |4 aut 
700 1 |a Kuroha, Takeshi  |e verfasserin  |4 aut 
700 1 |a Hayashi, Nagao  |e verfasserin  |4 aut 
700 1 |a Aiga, Saori  |e verfasserin  |4 aut 
700 1 |a Itoh, Jun-Ichi  |e verfasserin  |4 aut 
700 1 |a Yoshimura, Atsushi  |e verfasserin  |4 aut 
700 1 |a Sasaki-Sekimoto, Yuko  |e verfasserin  |4 aut 
700 1 |a Ohta, Hiroyuki  |e verfasserin  |4 aut 
700 1 |a Shimojima, Mie  |e verfasserin  |4 aut 
700 1 |a Malik, Al Imran  |e verfasserin  |4 aut 
700 1 |a Pedersen, Ole  |e verfasserin  |4 aut 
700 1 |a Colmer, Timothy David  |e verfasserin  |4 aut 
700 1 |a Ashikari, Motoyuki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 218(2018), 4 vom: 01. Juni, Seite 1558-1569  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:218  |g year:2018  |g number:4  |g day:01  |g month:06  |g pages:1558-1569 
856 4 0 |u http://dx.doi.org/10.1111/nph.15070  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 218  |j 2018  |e 4  |b 01  |c 06  |h 1558-1569