Ecology and performance of aerobic granular sludge treating high-saline municipal wastewater
The successful development of aerobic granular sludge (AGS) for secondary wastewater treatment has been linked to a dedicated anaerobic feeding phase, which enables key microbes such as poly-phosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms to gain a competitive advantage o...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 77(2018), 3-4 vom: 01. Feb., Seite 1107-1114 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Waste Water Nitrogen N762921K75 |
Zusammenfassung: | The successful development of aerobic granular sludge (AGS) for secondary wastewater treatment has been linked to a dedicated anaerobic feeding phase, which enables key microbes such as poly-phosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms to gain a competitive advantage over floc-forming organisms. The application of AGS to treat high-saline sewage and its subsequent impacts on microbial ecology, however, are less well understood. In this study, the impacts of high-saline sewage on AGS development, performance and ecology were investigated using molecular microbiology methods. Two feeding strategies were compared at pilot scale: a full (100%) anaerobic feed; and a partial (33%) anaerobic feed. The results were compared to a neighbouring full-scale conventional activated sludge (CAS) system (100% aerobic). We observed that AGS developed under decreased anaerobic contact showed a comparable formation, stability and nitrogen removal performance to the 100% anaerobically fed system. Analysis of the microbial ecology showed that the altered anaerobic contact had minimal effect on the abundances of the functional nitrifying and denitrifying bacteria and Archaea; however, there were notable ecological differences when comparing different sized granules. In contrast to previous work, a large enrichment in PAOs in AGS was not observed in high-saline wastewater, which coincided with poor observed phosphate removal performance. Instead, AGS exhibited a substantial enrichment in sulfide-oxidising bacteria, which was complemented by elemental analysis that identified the presence of elemental sulfur precipitation. The potential role for these organisms in AGS treating high-saline wastewater is discussed |
---|---|
Beschreibung: | Date Completed 15.08.2018 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2017.626 |