Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization

© 2018 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 6 vom: 31. Juni, Seite 2721-2734
1. Verfasser: Carrara, Joseph E (VerfasserIn)
Weitere Verfasser: Walter, Christopher A, Hawkins, Jennifer S, Peterjohn, William T, Averill, Colin, Brzostek, Edward R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. arbuscular mycorrhizal fungi belowground carbon allocation extracellular enzymes microbial community nitrogen fertilization plant-microbial interactions Soil mehr... Carbon 7440-44-0 Nitrogen N762921K75
LEADER 01000caa a22002652 4500
001 NLM281461880
003 DE-627
005 20240318233211.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14081  |2 doi 
028 5 2 |a pubmed24n1334.xml 
035 |a (DE-627)NLM281461880 
035 |a (NLM)29488286 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Carrara, Joseph E  |e verfasserin  |4 aut 
245 1 0 |a Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.12.2018 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a arbuscular mycorrhizal fungi 
650 4 |a belowground carbon allocation 
650 4 |a extracellular enzymes 
650 4 |a microbial community 
650 4 |a nitrogen fertilization 
650 4 |a plant-microbial interactions 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Walter, Christopher A  |e verfasserin  |4 aut 
700 1 |a Hawkins, Jennifer S  |e verfasserin  |4 aut 
700 1 |a Peterjohn, William T  |e verfasserin  |4 aut 
700 1 |a Averill, Colin  |e verfasserin  |4 aut 
700 1 |a Brzostek, Edward R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 6 vom: 31. Juni, Seite 2721-2734  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:6  |g day:31  |g month:06  |g pages:2721-2734 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14081  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 6  |b 31  |c 06  |h 2721-2734