Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 14 vom: 15. Apr., Seite e1705082 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article cell encapsulation hollow knotted microfibers microfluidic spinning perfusable channels tissue engineering |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Fiber materials with different structural features, which in many cases endow the fibers extraordinary functions, are drawing considerable attention from biomedical and material researchers. Here, perfusable necklace-like knotted microfibers are presented for the first time. Additionally, a novel microfluidic spinning method facilitates the production of variable knots and channels. Not only spindle-, but also hemisphere- and petal-knotted microfibers can be controllably fabricated. Generation and perfusion of both Janus channels and helical channel in the knotted microfibers are also shown. With no need of oil and surfactant, the spinning process is highly cytocompatible. The potential bioengineering and biomedical application of the knotted hollow microfiber is demonstrated by its cell-encapsulation feasibility and the unique liver acinus-like diffusion gradient in the knot. The merits of perfusability, cytocompatibility, and structural diversity of the microfibers may open more avenues for further material and biomedical investigation |
---|---|
Beschreibung: | Date Completed 01.08.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201705082 |