Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 125(2018) vom: 01. Apr., Seite 239-246
1. Verfasser: Yan, Kun (VerfasserIn)
Weitere Verfasser: Zhao, Shijie, Cui, Mingxing, Han, Guangxuan, Wen, Pei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Immunoblot analysis Photoinhibition Reactive oxygen species Stomatal limitation Tuber yield Photosystem I Protein Complex Water 059QF0KO0R
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR0), and PSI seemed more vulnerable because of greater decrease in △MR/MR0 than Fv/Fm. In line with decreased △MR/MR0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H2O2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke
Beschreibung:Date Completed 12.07.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2018.02.017