CAMERRA : An analysis tool for the computation of conformational dynamics by evaluating residue-residue associations

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 20 vom: 30. Juli, Seite 1568-1578
1. Verfasser: Johnson, Quentin R (VerfasserIn)
Weitere Verfasser: Lindsay, Richard J, Shen, Tongye
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:News biopolymer conformational ensemble contact matrix covariance matrix principal component analysis
Beschreibung
Zusammenfassung:© 2018 Wiley Periodicals, Inc.
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc
Beschreibung:Date Completed 09.09.2019
Date Revised 09.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.25192