|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM281158142 |
003 |
DE-627 |
005 |
20231225031004.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201705980
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0937.xml
|
035 |
|
|
|a (DE-627)NLM281158142
|
035 |
|
|
|a (NLM)29457284
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jiang, Yuyan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy
|b A Comparative Study
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Near-infrared (NIR) light is widely used for noninvasive optical diagnosis and phototherapy. However, current research focuses on the first NIR window (NIR-I, 650-950 nm), while the second NIR window (NIR-II, 1000-1700 nm) is far less exploited. The development of the first organic photothermal nanoagent (SPNI-II ) with dual-peak absorption in both NIR windows and its utilization in photothermal therapy (PTT) are reported herein. Such a nanoagent comprises a semiconducting copolymer with two distinct segments that respectively and identically absorb NIR light at 808 and 1064 nm. With the photothermal conversion efficiency of 43.4% at 1064 nm generally higher than other inorganic nanomaterials, SPNI-II enables superior deep-tissue heating at 1064 nm over that at 808 nm at their respective safety limits. Model deep-tissue cancer PTT at a tissue depth of 5 mm validates the enhanced antitumor effect of SPNI-II when shifting laser irradiation from the NIR-I to the NIR-II window. The good biodistribution and facile synthesis of SPNI-II also allow it to be doped with an NIR dye for fluorescence-imaging-guided NIR-II PTT through systemic administration. Thus, this study paves the way for the development of new polymeric nanomaterials to advance phototherapy
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a cancer therapy
|
650 |
|
4 |
|a photothermal therapy
|
650 |
|
4 |
|a second near-infrared window
|
650 |
|
4 |
|a semiconducting polymer nanoparticles
|
700 |
1 |
|
|a Li, Jingchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhen, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pu, Kanyi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 14 vom: 30. Apr., Seite e1705980
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:14
|g day:30
|g month:04
|g pages:e1705980
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201705980
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 14
|b 30
|c 04
|h e1705980
|