LEADER 01000naa a22002652 4500
001 NLM281095523
003 DE-627
005 20231225030834.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14094  |2 doi 
028 5 2 |a pubmed24n0936.xml 
035 |a (DE-627)NLM281095523 
035 |a (NLM)29450980 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niu, Mutian  |e verfasserin  |4 aut 
245 1 0 |a Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.01.2019 
500 |a Date Revised 09.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a dairy cows 
650 4 |a dry matter intake 
650 4 |a enteric methane emissions 
650 4 |a methane intensity 
650 4 |a methane yield 
650 4 |a prediction models 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Kebreab, Ermias  |e verfasserin  |4 aut 
700 1 |a Hristov, Alexander N  |e verfasserin  |4 aut 
700 1 |a Oh, Joonpyo  |e verfasserin  |4 aut 
700 1 |a Arndt, Claudia  |e verfasserin  |4 aut 
700 1 |a Bannink, André  |e verfasserin  |4 aut 
700 1 |a Bayat, Ali R  |e verfasserin  |4 aut 
700 1 |a Brito, André F  |e verfasserin  |4 aut 
700 1 |a Boland, Tommy  |e verfasserin  |4 aut 
700 1 |a Casper, David  |e verfasserin  |4 aut 
700 1 |a Crompton, Les A  |e verfasserin  |4 aut 
700 1 |a Dijkstra, Jan  |e verfasserin  |4 aut 
700 1 |a Eugène, Maguy A  |e verfasserin  |4 aut 
700 1 |a Garnsworthy, Phil C  |e verfasserin  |4 aut 
700 1 |a Haque, Md Najmul  |e verfasserin  |4 aut 
700 1 |a Hellwing, Anne L F  |e verfasserin  |4 aut 
700 1 |a Huhtanen, Pekka  |e verfasserin  |4 aut 
700 1 |a Kreuzer, Michael  |e verfasserin  |4 aut 
700 1 |a Kuhla, Bjoern  |e verfasserin  |4 aut 
700 1 |a Lund, Peter  |e verfasserin  |4 aut 
700 1 |a Madsen, Jørgen  |e verfasserin  |4 aut 
700 1 |a Martin, Cécile  |e verfasserin  |4 aut 
700 1 |a McClelland, Shelby C  |e verfasserin  |4 aut 
700 1 |a McGee, Mark  |e verfasserin  |4 aut 
700 1 |a Moate, Peter J  |e verfasserin  |4 aut 
700 1 |a Muetzel, Stefan  |e verfasserin  |4 aut 
700 1 |a Muñoz, Camila  |e verfasserin  |4 aut 
700 1 |a O'Kiely, Padraig  |e verfasserin  |4 aut 
700 1 |a Peiren, Nico  |e verfasserin  |4 aut 
700 1 |a Reynolds, Christopher K  |e verfasserin  |4 aut 
700 1 |a Schwarm, Angela  |e verfasserin  |4 aut 
700 1 |a Shingfield, Kevin J  |e verfasserin  |4 aut 
700 1 |a Storlien, Tonje M  |e verfasserin  |4 aut 
700 1 |a Weisbjerg, Martin R  |e verfasserin  |4 aut 
700 1 |a Yáñez-Ruiz, David R  |e verfasserin  |4 aut 
700 1 |a Yu, Zhongtang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 8 vom: 16. Aug., Seite 3368-3389  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:8  |g day:16  |g month:08  |g pages:3368-3389 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14094  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 8  |b 16  |c 08  |h 3368-3389