Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems

Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 40(2019), 18 vom: 01. Juli, Seite 2337-2344
1. Verfasser: Zhang, Zhiqiang (VerfasserIn)
Weitere Verfasser: Li, Jiamiao, Hao, Xiaoxuan, Gu, Zaoli, Xia, Siqing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Volatile fatty acid anaerobic fermentation bioelectrochemical system electron donation interplay Fatty Acids, Volatile
Beschreibung
Zusammenfassung:Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate
Beschreibung:Date Completed 09.09.2019
Date Revised 09.09.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2018.1441334