Convolutional Sparse and Low-Rank Coding-Based Image Decomposition

We propose novel convolutional sparse and low-rank coding-based methods for cartoon and texture decomposition. In our method, we first learn a set of generic filters that can efficiently represent cartoon-and texture-type images. Then, using these learned filters, we propose two optimization framewo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 5 vom: 01. Mai, Seite 2121-2133
1. Verfasser: Zhang, He (VerfasserIn)
Weitere Verfasser: Patel, Vishal M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM280911246
003 DE-627
005 20250223030036.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2786469  |2 doi 
028 5 2 |a pubmed25n0936.xml 
035 |a (DE-627)NLM280911246 
035 |a (NLM)29432095 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, He  |e verfasserin  |4 aut 
245 1 0 |a Convolutional Sparse and Low-Rank Coding-Based Image Decomposition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose novel convolutional sparse and low-rank coding-based methods for cartoon and texture decomposition. In our method, we first learn a set of generic filters that can efficiently represent cartoon-and texture-type images. Then, using these learned filters, we propose two optimization frameworks to decompose a given image into cartoon and texture components: convolutional sparse coding-based image decomposition; and convolutional low-rank coding-based image decomposition. By working directly on the whole image, the proposed image separation algorithms do not need to divide the image into overlapping patches for leaning local dictionaries. The shift-invariance property is directly modeled into the objective function for learning filters. Extensive experiments show that the proposed methods perform favorably compared with state-of-the-art image separation methods 
650 4 |a Journal Article 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 5 vom: 01. Mai, Seite 2121-2133  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:5  |g day:01  |g month:05  |g pages:2121-2133 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2786469  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 5  |b 01  |c 05  |h 2121-2133