|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM280899092 |
003 |
DE-627 |
005 |
20250223025634.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201705256
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0936.xml
|
035 |
|
|
|a (DE-627)NLM280899092
|
035 |
|
|
|a (NLM)29430797
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pan, Yue
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Inherently Eu2+ /Eu3+ Codoped Sc2 O3 Nanoparticles as High-Performance Nanothermometers
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Luminescent nanothermometers have shown competitive superiority for contactless and noninvasive temperature probing especially at the nanoscale. Herein, we report the inherently Eu2+ /Eu3+ codoped Sc2 O3 nanoparticles synthesized via a one-step and controllable thermolysis reaction where Eu3+ is in-situ reduced to Eu2+ by oleylamine. The stable luminescence emission of Eu3+ as internal standard and the sensitive response of Eu2+ emission to temperature as probe comprise a perfect ratiometric nanothermometer with wide-range temperature probing (77-267 K), high repeatability (>99.94%), and high relative sensitivity (3.06% K-1 at 267 K). The in situ reduction of Eu3+ to Eu2+ ensures both uniform distribution in the crystal lattice and simultaneous response upon light excitation of Eu2+ /Eu3+ . To widen this concept, Tb3+ is codoped as additional internal reference for tunable temperature probing range
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Eu2+
|
650 |
|
4 |
|a Sc2O3
|
650 |
|
4 |
|a in situ reduction
|
650 |
|
4 |
|a nanothermometers
|
700 |
1 |
|
|a Xie, Xiaoji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Qianwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yangbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lingxiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Bingxiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Haiquan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Ling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Wei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 14 vom: 11. Apr., Seite e1705256
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:14
|g day:11
|g month:04
|g pages:e1705256
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201705256
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 14
|b 11
|c 04
|h e1705256
|